博客
关于我
SSLOJ 1758连通图
阅读量:332 次
发布时间:2019-03-04

本文共 1332 字,大约阅读时间需要 4 分钟。

判断一个图是否为连通图

判断一个图是否为连通图的步骤如下:

  • 输入处理

    • 读取顶点数 n
    • 读取边的信息,存储每个顶点的邻居列表。
  • 初始化访问数组

    • 创建一个大小为 n+1 的数组 visit,初始值为 False,表示所有顶点未被访问。
    • 从顶点 1 开始,首先标记为已访问。
  • 深度优先搜索(DFS)

    • 使用栈结构记录当前路径。
    • 对于每个顶点,遍历其所有邻居:
      • 如果邻居未被访问,标记为已访问,压入栈。
      • 如果邻居已访问,继续检查下一个邻居。
    • 如果在遍历过程中,发现有顶点未被访问,说明存在多个连通分量,图不连通。
  • 结果判断

    • 如果所有顶点都被访问,图连通,输出 1
    • 否则,图不连通,输出 0
  • 示例代码

    #include 
    #include
    using namespace std;int main() { int n; cin >> n; vector
    > adj(n + 1); for (int i = 1; i <= n; ++i) { adj[i].reserve(n + 1); } for (int x, y; cin >> x >> y; ++adj[x].push_back(y), ++adj[y].push_back(x)) { if (x < 1 || x > n || y < 1 || y > n) { // 处理无效顶点,跳过 continue; } } vector
    visit(n + 1, false); stack
    stack; visit[1] = true; stack.push(1); bool connected = true; while (!stack.empty()) { int current = stack.top(); stack.pop(); for (int neighbor : adj[current]) { if (!visit[neighbor]) { visit[neighbor] = true; stack.push(neighbor); } } } for (int i = 1; i <= n; ++i) { if (!visit[i]) { connected = false; break; } } cout << (connected ? 1 : 0);}

    代码解释

    • 输入处理:读取顶点数 n 和边的信息,构建邻接表 adj
    • 初始化访问数组visit 记录每个顶点是否被访问,初始时只有顶点 1 被标记为已访问。
    • DFS遍历:使用栈结构从顶点 1 开始遍历所有可达顶点,标记访问状态。
    • 结果判断:检查所有顶点是否被访问。如果有未被访问的顶点,图不连通,输出 0;否则,输出 1

    通过以上方法,可以准确判断给定图是否为连通图。

    转载地址:http://rwye.baihongyu.com/

    你可能感兴趣的文章
    NOI-1.3-11-计算浮点数相除的余数
    查看>>
    noi.ac #36 模拟
    查看>>
    NOI2010 海拔(平面图最大流)
    查看>>
    NOIp2005 过河
    查看>>
    NOIP2011T1 数字反转
    查看>>
    NOIP2014 提高组 Day2——寻找道路
    查看>>
    noip借教室 题解
    查看>>
    NOIP模拟测试19
    查看>>
    NOIp模拟赛二十九
    查看>>
    Vue3+element plus+sortablejs实现table列表拖拽
    查看>>
    Nokia5233手机和我装的几个symbian V5手机软件
    查看>>
    non linear processor
    查看>>
    Non-final field ‘code‘ in enum StateEnum‘
    查看>>
    none 和 host 网络的适用场景 - 每天5分钟玩转 Docker 容器技术(31)
    查看>>
    None还可以是函数定义可选参数的一个默认值,设置成默认值时实参在调用该函数时可以不输入与None绑定的元素...
    查看>>